13 research outputs found

    Efficient and Effective Generation of Test Cases for Pedestrian Detection - Search-based Software Testing of Baidu Apollo in SVL

    Get PDF
    With the growing capabilities of autonomous vehicles, there is a higher demand for sophisticated and pragmatic quality assurance approaches for machine learning-enabled systems in the automotive AI context. The use of simulation-based prototyping platforms provides the possibility for early-stage testing, enabling inexpensive testing and the ability to capture critical corner-case test scenarios. Simulation-based testing properly complements conventional on-road testing. However, due to the large space of test input parameters in these systems, the efficient generation of effective test scenarios leading to the unveiling of failures is a challenge. This paper presents a study on testing pedestrian detection and emergency braking system of the Baidu Apollo autonomous driving platform within the SVL simulator. We propose an evolutionary automated test generation technique that generates failure-revealing scenarios for Apollo in the SVL environment. Our approach models the input space using a generic and flexible data structure and benefits a multi-criteria safety-based heuristic for the objective function targeted for optimization. This paper presents the results of our proposed test generation technique in the 2021 IEEE Autonomous Driving AI Test Challenge. In order to demonstrate the efficiency and effectiveness of our approach, we also report the results from a baseline random generation technique. Our evaluation shows that the proposed evolutionary test case generator is more effective at generating failure-revealing test cases and provides higher diversity between the generated failures than the random baseline

    Efficient and Effective Generation of Test Cases for Pedestrian Detection - Search-based Software Testing of Baidu Apollo in SVL

    Get PDF
    With the growing capabilities of autonomous vehicles, there is a higher demand for sophisticated and pragmatic quality assurance approaches for machine learning-enabled systems in the automotive AI context. The use of simulation-based prototyping platforms provides the possibility for early-stage testing, enabling inexpensive testing and the ability to capture critical corner-case test scenarios. Simulation-based testing properly complements conventional on-road testing. However, due to the large space of test input parameters in these systems, the efficient generation of effective test scenarios leading to the unveiling of failures is a challenge. This paper presents a study on testing pedestrian detection and emergency braking system of the Baidu Apollo autonomous driving platform within the SVL simulator. We propose an evolutionary automated test generation technique that generates failure-revealing scenarios for Apollo in the SVL environment. Our approach models the input space using a generic and flexible data structure and benefits a multi-criteria safety-based heuristic for the objective function targeted for optimization. This paper presents the results of our proposed test generation technique in the 2021 IEEE Autonomous Driving AI Test Challenge. In order to demonstrate the efficiency and effectiveness of our approach, we also report the results from a baseline random generation technique. Our evaluation shows that the proposed evolutionary test case generator is more effective at generating failure-revealing test cases and provides higher diversity between the generated failures than the random baseline

    Ergo, SMIRK is Safe: A Safety Case for a Machine Learning Component in a Pedestrian Automatic Emergency Brake System

    Full text link
    Integration of Machine Learning (ML) components in critical applications introduces novel challenges for software certification and verification. New safety standards and technical guidelines are under development to support the safety of ML-based systems, e.g., ISO 21448 SOTIF for the automotive domain and the Assurance of Machine Learning for use in Autonomous Systems (AMLAS) framework. SOTIF and AMLAS provide high-level guidance but the details must be chiseled out for each specific case. We report results from an industry-academia collaboration on safety assurance of SMIRK, an ML-based pedestrian automatic emergency braking demonstrator running in an industry-grade simulator. We present the outcome of applying AMLAS on SMIRK for a minimalistic operational design domain, i.e., a complete safety case for its integrated ML-based component. Finally, we report lessons learned and provide both SMIRK and the safety case under an open-source licence for the research community to reuse.Comment: Under revie

    Intelligence-Driven Software Performance Assurance

    No full text
    Software performance assurance is of great importance for the success of software products, which are nowadays involved in many parts of our life. Performance evaluation approaches such as performance modeling, testing, as well as runtime performance control methods, all can contribute to the realization of software performance assurance. Many of the common approaches to tackle challenges in this area involve relying on performance models or using system models and source code. Although modeling provides a deep insight into the system behavior, developing a  detailed model is challenging.  Furthermore, software artifacts such as models and source code might not be readily available at all times in the development lifecycle. This thesis focuses on leveraging the potential of machine learning (ML) and evolutionary search-based techniques to provide viable solutions for addressing the challenges in different aspects of software performance assurance efficiently and effectively. In this thesis, we first investigate the capabilities of model-free reinforcement learning to address the objectives in robustness testing problems. We develop two self-adaptive reinforcement learning-driven test agents called SaFReL and RELOAD. They generate effective platform-based test scenarios and test workloads, respectively. The output scenarios and workloads help testers and software engineers meet their objectives efficiently without relying on models or source code. SaFReL and RELOAD learn the optimal policies (ways) to meet the test objectives and can reuse the learned policies adaptively in other testing settings. Policy reuse can lead to higher test efficiency and cost savings, for example, when testing similar test objectives or software systems with comparable performance sensitivity. Next, we leverage the potential of evolutionary computation algorithms, i.e., genetic algorithms, evolution strategies, and particle swarm optimization, to generate failure-revealing test scenarios for robustness testing of AI systems. In this part, we choose autonomous driving systems as a prevailing example of contemporary AI systems. We study the efficacy of the proposed evolutionary search-based test generation techniques and evaluate primarily to what extent they can trigger failures. Moreover, we investigate the diversity of those failures and compare them to existing baseline solutions.  Finally, we again use the potential of model-free reinforcement learning to develop adaptive ML-driven runtime performance control approaches. We present a response time preservation method for a sample type of industrial applications and a resource allocation technique for dynamic workloads in a data grid application. The proposed ML-driven techniques learn how to adjust the tunable parameters and resource configuration at runtime to keep the performance continually compliant with the requirements and to further optimize the runtime performance. We evaluate the efficacy of the approaches and show how effectively they can improve the performance and keep the performance requirements satisfied under varying conditions such as dynamic workloads and the occurrence of runtime events that lead to substantial response time deviations

    Intelligence-Driven Software Performance Assurance

    No full text
    Software performance assurance is of great importance for the success of software products, which are nowadays involved in many parts of our life. Performance evaluation approaches such as performance modeling, testing, as well as runtime performance control methods, all can contribute to the realization of software performance assurance. Many of the common approaches to tackle challenges in this area involve relying on performance models or using system models and source code. Although modeling provides a deep insight into the system behavior, developing a  detailed model is challenging.  Furthermore, software artifacts such as models and source code might not be readily available at all times in the development lifecycle. This thesis focuses on leveraging the potential of machine learning (ML) and evolutionary search-based techniques to provide viable solutions for addressing the challenges in different aspects of software performance assurance efficiently and effectively. In this thesis, we first investigate the capabilities of model-free reinforcement learning to address the objectives in robustness testing problems. We develop two self-adaptive reinforcement learning-driven test agents called SaFReL and RELOAD. They generate effective platform-based test scenarios and test workloads, respectively. The output scenarios and workloads help testers and software engineers meet their objectives efficiently without relying on models or source code. SaFReL and RELOAD learn the optimal policies (ways) to meet the test objectives and can reuse the learned policies adaptively in other testing settings. Policy reuse can lead to higher test efficiency and cost savings, for example, when testing similar test objectives or software systems with comparable performance sensitivity. Next, we leverage the potential of evolutionary computation algorithms, i.e., genetic algorithms, evolution strategies, and particle swarm optimization, to generate failure-revealing test scenarios for robustness testing of AI systems. In this part, we choose autonomous driving systems as a prevailing example of contemporary AI systems. We study the efficacy of the proposed evolutionary search-based test generation techniques and evaluate primarily to what extent they can trigger failures. Moreover, we investigate the diversity of those failures and compare them to existing baseline solutions.  Finally, we again use the potential of model-free reinforcement learning to develop adaptive ML-driven runtime performance control approaches. We present a response time preservation method for a sample type of industrial applications and a resource allocation technique for dynamic workloads in a data grid application. The proposed ML-driven techniques learn how to adjust the tunable parameters and resource configuration at runtime to keep the performance continually compliant with the requirements and to further optimize the runtime performance. We evaluate the efficacy of the approaches and show how effectively they can improve the performance and keep the performance requirements satisfied under varying conditions such as dynamic workloads and the occurrence of runtime events that lead to substantial response time deviations

    Machine Learning-Assisted Performance Assurance

    No full text
    With the growing involvement of software systems in our life, assurance of performance, as an important quality characteristic, rises to prominence for the success of software products. Performance testing, preservation, and improvement all contribute to the realization of performance assurance. Common approaches to tackle challenges in testing, preservation, and improvement of performance mainly involve techniques relying on performance models or using system models or source code. Although modeling provides a deep insight into the system behavior, drawing a well-detailed model is challenging. On the other hand, those artifacts such as models and source code might not be available all the time. These issues are the motivations for using model-free machine learning techniques such as model-free reinforcement learning to address the related challenges in performance assurance. Reinforcement learning implies that if the optimal policy (way) for achieving the intended objective in a performance assurance process could instead be learnt by the acting system (e.g., the tester system), then the intended objective could be accomplished without advanced performance models. Furthermore, the learnt policy could later be reused in similar situations, which leads to efficiency improvement by saving computation time while reducing the dependency on the models and source code. In this thesis, our research goal is to develop adaptive and efficient performance assurance techniques meeting the intended objectives without access to models and source code. We propose three model-free learning-based approaches to tackle the challenges; efficient generation of performance test cases, runtime performance (response time) preservation, and performance improvement in terms of makespan (completion time) reduction. We demonstrate the efficiency and adaptivity of our approaches based on experimental evaluations conducted on the research prototype tools, i.e. simulation environments that we developed or tailored for our problems, in different application areas

    A Multi-Objective Optimization Model for Data-Intensive Workflow Scheduling in Data Grids

    No full text
    The concept of workflow is used for modeling many of the data-intensive scientific applications executed on data grids. A Workflow is a series of interdependent tasks during which data is processed by different tasks. Scheduling the workflows in the grids is the process of assigning tasks to appropriate resources with the aim of achieving goals such as reducing workflow completion time while considering the data dependencies between the tasks. Data access time, processing time, and waiting time together constitute task completion time in the grids. Workflow scheduling aims to optimize these parameters in such a way that the workflow completion time decreases, and the system efficiency improves. In this paper, a scheduling model based on multi-objective optimization is proposed for scheduling data-intensive workflows in data grids. The scheduling model aims to optimize data communication cost, waiting time, and tasks processing time while considering data dependencies between the tasks. The model defines the data communication cost in terms of data transfer time in various communications between nodes (intra-and inter-cluster communications). This study uses four different Multi-Objective Evolutionary Algorithms (MOEAs) as well as Random Search (RS) algorithm to implement the proposed scheduling model. Convenient coding mechanisms for representing chromosomes, compatible crossover and mutation operators were also designed. Simulation results of the proposed scheduling model using different optimization algorithms are presented. The results are then assessed and compared based on different quality indicators

    Anomaly Detection Dataset for Industrial Control Systems

    Full text link
    Over the past few decades, Industrial Control Systems (ICSs) have been targeted by cyberattacks and are becoming increasingly vulnerable as more ICSs are connected to the internet. Using Machine Learning (ML) for Intrusion Detection Systems (IDS) is a promising approach for ICS cyber protection, but the lack of suitable datasets for evaluating ML algorithms is a challenge. Although there are a few commonly used datasets, they may not reflect realistic ICS network data, lack necessary features for effective anomaly detection, or be outdated. This paper presents the 'ICS-Flow' dataset, which offers network data and process state variables logs for supervised and unsupervised ML-based IDS assessment. The network data includes normal and anomalous network packets and flows captured from simulated ICS components and emulated networks. The anomalies were injected into the system through various attack techniques commonly used by hackers to modify network traffic and compromise ICSs. We also proposed open-source tools, `ICSFlowGenerator' for generating network flow parameters from Raw network packets. The final dataset comprises over 25,000,000 raw network packets, network flow records, and process variable logs. The paper describes the methodology used to collect and label the dataset and provides a detailed data analysis. Finally, we implement several ML models, including the decision tree, random forest, and artificial neural network to detect anomalies and attacks, demonstrating that our dataset can be used effectively for training intrusion detection ML models

    Anomaly Detection Dataset for Industrial Control Systems

    No full text
    Over the past few decades, Industrial Control Systems (ICS) have been targeted by cyberattacks and are becoming increasingly vulnerable as more ICSs are connected to the internet. Using Machine Learning (ML) for Intrusion Detection Systems (IDS) is a promising approach for ICS cyber protection, but the lack of suitable datasets for evaluating ML algorithms is a challenge. Although a few commonly used datasets may not reflect realistic ICS network data, lack necessary features for effective anomaly detection, or be outdated. This paper introduces the ‘ICS-Flow’ dataset, which offers network data and process state variables logs for supervised and unsupervised ML-based IDS assessment. The network data includes normal and anomalous network packets and flows captured from simulated ICS components and emulated networks, where the anomalies were applied to the system through various cyberattacks. We also proposed an open-source tool, “ICSFlowGenerator,” for generating network flow parameters from Raw network packets. The final dataset comprises over 25,000,000 raw network packets, network flow records, and process variable logs. The paper describes the methodology used to collect and label the dataset and provides a detailed data analysis. Finally, we implement several ML models, including the decision tree, random forest, and artificial neural network to detect anomalies and attacks, demonstrating that our dataset can be used effectively for training intrusion detection ML models
    corecore